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Abstract

In this paper the energy dissipated through friction is analysed for a type of friction dampers used to
reduce squeal noise from railway wheels. A one degree-of-freedom system is analytically studied. First the
existence and stability of a periodic solution are demonstrated and then the energy dissipated per cycle is
determined as a function of the system parameters. In this way the influence of the mass, natural frequency
and internal damping of the friction damper on the energy dissipation is established. It is shown that
increasing the mass and reducing the natural frequency and internal damping of the friction damper
maximizes the dissipated energy.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Frictional forces arising from the relative motion of two contacting surfaces are a well-known
source of energy dissipation. Sometimes this is an unwanted effect of the design, but it can also be
intentionally used to increase the damping of a certain system in a simple and cost-effective way.

Some work has been done in the past to understand the behaviour of simple systems with
Coulomb friction. Den Hartog [1] obtained closed-form analytical expressions for a single degree-
of-freedom (DOF) system excited by a harmonic force. He showed both theoretically and
experimentally that, depending on system parameters, the mass may continuously move or it may
come to a stop during parts of each cycle. Years later Levitan [2] studied the forced oscillations of
a mass-spring-damper system in which the support rather than the mass is excited. He used a
Fourier series approximation for the Coulomb friction force that acts between the mass and the
support. Hundal [3] obtained closed-form analytical expressions for a single DOF system with the
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Coulomb friction force acting between the mass and the ground. His work was limited to a
maximum of two stops per cycle. Pratt and Williams [4] analyzed the relative motion of two
masses with Coulomb friction contact. They used a combined analytical-numerical approach to
obtain the response of the system for arbitrary values of the friction force, excitation frequency
and natural frequency of the bodies. They showed that under certain conditions multiple lock-ups
per cycle are possible and that for frequency ratios o0=on (excitation frequency versus natural
frequency) below 0.5 no continuous sliding motion is possible. Their results were limited to two
blocks with the same mass and spring stiffness and support motion of the same amplitude and
frequency.

The aim of the research in the publications described above is to analyse whether the motion is
continuous or if several stops per cycle occur and also to determine the influence of the system
parameters on the response amplitude. In the majority of these publications, no attention has been
paid to the analysis of the influence of the system parameters on the energy dissipated by friction
and no work has been done to investigate which conditions maximize the energy dissipation.
Beards and Williams [5] analyzed the damping due to rotational slip in structural joints. They
studied a two DOF system and concluded, from both analytical and experimental results, that, as
the friction force increases the response amplitude goes through a minimum. Later Beards and
Woowat [6] carried out an experimental study of a steel frame where the joint clamping forces
could be varied. They found that an optimum clamping force exists that minimizes the frame
response but they did not investigate the dependence of the optimum on the system parameters.
More recently, in his review of friction-induced vibration Ibrahim [7] compares the energy
dissipated by friction to the energy dissipated by a viscous damper showing that the former is
larger than the latter.

Another review on friction related phenomena has been published by Akay [8]. In this
publication the use of ring dampers in order to reduce the vibration of the rotor in disk-brakes is
mentioned. Ring dampers reduce vibrations by means of friction between the ring and the rotor.
Very significant reductions of the bending vibrations of the rotor are achieved. A similar concept
was used by L !opez [9] to reduce squeal noise in railway wheels. A ring damper was developed in
[9] that greatly reduces the bending vibrations of the wheel.

In the current paper an analytical study for a better understanding and optimization of the
behaviour of ring dampers is presented. This study was originally intended for ring dampers for
railway wheels but the same conclusions could be applied to ring dampers for other types of
wheels or disks undergoing high axial (bending) vibrations. During squeal one or two bending
vibration modes of the wheel are predominant in the response [9–12]. If the wheel is vibrating in a
given mode, it can be assumed that the ring will follow the same pattern and the system can be
simplified to a mode to mode interaction, thus two DOFs [9]. This is an oversimplification of the
wheel/ring interaction, but it allows studying the qualitative influence of the main parameters of
the ring damper.

In order to determine the influence of several parameters on the amount of energy dissipated by
friction, one and two DOF systems will be analyzed. Those systems are very simple models of the
full wheel/ring interaction and their aim is to show the influence of the friction force and ring
mass, natural frequencies and damping on the dissipated energy.

Many different models are proposed for the mathematical description of dry-friction which
mostly differ in the way the stick phase is modelled [13]. The aim of this work is to gain insight on
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the behaviour of a friction damper through analytical models and produce simple rules to
maximize the energy dissipation. The classical Coulomb’s friction law has been chosen for
simplicity, since more complex models would make an analytical approach intractable. In the
following analysis the simplest form of Coulomb’s friction, with equal static and dynamic friction
coefficients, is used (Fig. 1(a)). In Appendix A the possibility of having different static and
dynamic friction coefficients is studied (Fig. 1(b)). It is shown that for the situation under study
(steel–steel contact) the same conclusions can be derived with respect to the optimization of the
system parameters for maximum energy dissipation.

In Section 2 a mass sliding on a moving base is studied and the existence and stability of
periodic steady state oscillations is investigated. It is shown that, regardless of the value of the
friction force, a periodic stationary motion exists and that this motion is stable.

In Section 3 the energy dissipated through friction in the steady state is determined for
a mass sliding on a moving base. This case applies to a situation in which the wheel is massive
compared to the ring and vibrates undisturbed by the latter. The natural frequencies of the
ring are well below the oscillation frequency of the wheel; thus, the response of the former
is determined by its mass. The results are also extended to a block sliding on another block
driven by a harmonic external force. This example represents a case in which wheel and ring
can have masses of the same order of magnitude, but still the oscillation frequency of the
external force must be well above the natural frequencies of both. With this example the
effect of the mass ratio of the structures on the energy dissipated by friction will be
shown.

The analysis of Section 3 is extended in Section 4 to a mass attached to a fixed support through
a spring and a damper. In this case the influence of the ratio of the oscillation frequency to the
natural frequency of the spring-mass system and of the damping ratio on the dissipated energy is
studied. With this example, the effect of the magnitude of the ring natural frequencies relative to
the vibration frequency of the wheel and of increasing the internal damping of the ring is shown.

In most of the above examples the wheel is taken as an ideal velocity source, with a fixed
vibration frequency. A single ring natural frequency is considered, which is equivalent to having a
mode to mode interaction. Despite these simplifications, the models proposed give sufficient
insight into the behaviour of ring dampers [14,15].
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2. Stationary periodic behaviour and stability

2.1. Existence of a stationary periodic solution

Before proceeding to derive an expression for the energy dissipated through friction in the
systems shown in Fig. 2, the existence of a steady state periodic behaviour will be checked.

In order to keep the equations simple, the existence of a stationary periodic motion will be analysed
for the simplest case of the mass sliding on a moving base shown in Fig. 2(a). A block of mass m is
loaded, with a normal force N; against the surface of the base. The surface moves with a sinusoidal
displacement x0ðtÞ ¼ X0 sino0t and the block follows with a displacement x2ðtÞ: The base motion is
transmitted to the block through the friction force. There are two possible motions for the block: stick
(velocity of block equals velocity of base) or slip (velocity of block different from velocity of base).

In the stick situation the velocity and acceleration of the block are

’x2ðtÞ ¼ ’x0ðtÞ ¼ o0X0 coso0t

.x2ðtÞ ¼ .x0ðtÞ ¼ �o2
0X0 sino0t

)
t0ptpt1: ð1Þ

Eq. (1) will hold until the acceleration of the block equals the limiting value given by the friction
force:

sino0t1 ¼ 7
Fr

o2
0X0m

¼ 7fr: ð2Þ

In this expression a normalized friction force parameter, fr; has been defined. The positive or
negative sign in (2) corresponds to a negative or positive acceleration of the base. From (2) it
becomes clear that time t1 will only exist if j frjo1: This gives an upper bound for the friction force
above which no slip occurs. For j frjX1 the block will permanently move with the same
displacement, velocity and acceleration as the base.

In the slip phase the velocity and acceleration of the block are:

’x2ðtÞ ¼ o0X0½8o0 frðt � t1Þ þ coso0t1�

.x2ðtÞ ¼ 8fro2
0X0

)
t1ptpt2: ð3Þ

The negative or positive sign in (3) corresponds to a negative or positive acceleration of the
base. Eqs. (3) will hold until the velocities of the block and the base are equal, ’x2ðt2Þ ¼ ’x0ðt2Þ:
From this condition the following equation can be obtained:

o0frðt2 � t1Þ ¼ 7ðcoso0t1 � coso0t2Þ: ð4Þ
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Fig. 2. 1 DOF systems. (a) mass on a moving base and (b) spring-mass-damper.
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The positive or negative sign in (4) corresponds to a negative or positive acceleration of the
base. The above expression can be used to numerically calculate t2 the knowledge of t1; the
normalized friction force and the frequency of the base motion.

If t1 and t2 are the limits of the slip phase for the half-cycle of negative acceleration of the base
and t3 and t4 are the corresponding limits for the half-cycle of positive acceleration of the base, as
shown in Fig. 3, it can be concluded from (1) and (3) that

t3 ¼ t1 þ
p
o0

; t4 ¼ t2 þ
p
o0

: ð5Þ

Since t2ot3; it is also true that t4ot1 þ 2p=o0; which means that at t4 the block and the base
will move together again until the cycle is completed at time t5 ¼ t1 þ 2p=o0: Therefore, the stick-
slip motion of the block is periodic with frequency o0:

For low values of fr the block will continuously slide on the base. The limit situation when the
block enters the sliding regime corresponds to a friction force such that at time t2 the acceleration of
the base surface is equal to the limiting value given by the friction force and the mass of the block:

sino0t2 ¼ �fr: ð6Þ

In this particular situation it follows from (5) and (6) that

t2 ¼ t3 ¼ t1 þ
p
o0

and t4 ¼ t1 þ
2p
o0

: ð7Þ
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Fig. 3. Velocity (top) and acceleration (bottom) of the block (thick line) and the base (thin line). (a) fr ¼ 0:7 and

(b) fr ¼ 0:2:
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The block’s motion is still periodic. Taking into account Eqs. (2) and (7), an expression for the
threshold normalized friction force can be derived from (4):

fr jthreshold ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 þ
p2

4

vuuut E0:5370: ð8Þ

It can be concluded that fr jthreshold is constant and the threshold friction force for the onset of
permanent sliding is linearly related to the block mass and base acceleration amplitude. For
normalized friction forces smaller than the threshold value given by (8) the block will permanently
slide.

In the continuous sliding situation it can be numerically shown that, although in the first cycles
there is no periodicity relationship between the time instants t1; t2 and t4; the relationships given in
(7) hold after a few cycles of motion. However, t1 no longer complies with Eq. (2), because at the
steady state there is no time instant at which, the relative velocity being zero, the accelerations of
block and base coincide. Now t1 is any time at which the velocity of the block equals the velocity
of the base; i.e. the time at which the friction force acting on the mass changes sign.

The existence of a periodic solution can be proved by choosing an initial value for t1 and then
solving Eq. (4) with alternating signs for several cycles of the motion. In this way the time instants
where the sign of the friction force changes can be determined (that is, the positions of the local
maxima and minima of the velocity of the block). In Fig. 4 the angle, o0Dt; between a maximum
and a minimum and between two consecutive maxima divided p; and 2p respectively is given. It is
clear that after a few cycles the angle between two consecutive maxima tends to 2p and each of the
half cycles has length p:

Now a new expression for the normalized friction force in terms of time t1 can be found from
(4) and (7):

fr ¼
2

p
coso0t1: ð9Þ

The same procedure can be followed for the spring-mass-damper system shown in Fig. 2(b) and
equations similar to (2) and (4) can be derived. But it becomes cumbersome to trace the response
of the system analytically. If the damping is set to zero, Deimling [16,17] has shown that a periodic
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solution exists for such a system. The periodic solution is also found if the dynamic equations of
the system are numerically integrated.

The present analysis is limited to values of the natural frequency of the spring-mass-damper
below the oscillation frequency of the base, on=o0o1; since wheel/ring interaction occurs mainly
between modes with an equal number of nodal diameters [18], which means that the natural
frequencies of the ring (block) will be lower than the natural frequencies of the wheel (base).
In their work with two friction-coupled oscillators Pratt and Williams [4] found that for on=o0 > 2
continuous sliding motion is not possible and more than two lock-ups per cycle can occur. For
on=o0o1; however, two types of motion have been found: permanent slip or stick-slip motion
with two lock-ups per cycle.

2.2. Stability of the periodic solution

In the previous subsection it has been shown that a periodic stationary solution exists. The goal
of this subsection is to prove that this periodic stationary solution is also a stable solution. To this
end the Floquet multipliers for the periodic solutions of the systems in Fig. 2 will be used. These
systems are non-linear non-autonomous systems and the differential equation that represents
them is

’xðtÞ ¼ fðt;xðtÞÞ with xðtÞT ¼ ½xðtÞ ’xðtÞ�: ð10Þ

Starting from Eq. (10) and linearizing around a periodic solution an expression that relates a
perturbation at a given time t0 to the perturbation at another time t can be obtained:

DxðtÞ ¼ Uðt; t0ÞDxðt0Þ: ð11Þ

Uðt; t0Þ is the fundamental solution matrix and its value after one period of the motion,
UT ¼ Uðt0 þ T ; t0Þ is called the monodromy matrix. The Floquet multipliers for a given periodic
solution of Eq. (10) are the eigenvalues of the monodromy matrix. The solution is locally stable if
the norms of the Floquet multipliers are all smaller than 1 [13,19].

For the system under study the above statements must be handled with care. This system is a
non-smooth system and the monodromy matrix might be undetermined if the initial time t0
corresponds to the transition from slip to stick or to the stick phase. In the following analysis, t0 is
a time instant at which the block is sliding.

The right hand side of (10) is discontinuous, since a different expression will hold depending on
if the block sticks to the base or if it slips. This has important consequences for the derivation of
the monodromy matrix. As the block changes from slip to stick, or from stick to slip, a jump
might occur. This jump is introduced in the monodromy matrix through saltation matrices [13].
The details over the derivation of the monodromy matrix and Floquet multipliers are given in
Appendix B. In the following the main results will be discussed.

The stability of the stick-slip periodic solution will be proved first. The monodromy matrix for
the stick-slip periodic solution of the systems in Fig. 2 can be written as follows:

UT ¼ UðDt5ÞS2 USðDt4ÞS1UðDt3ÞS2U
SðDt2ÞS1UðDt1Þ; ð12Þ

where UðDt1Þ are the fundamental solution matrices when the block is sliding, USðDtiÞ are the
fundamental solution matrices for the time intervals where the block sticks to the base and Si are
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saltation matrices. The time instants when the block changes from slip to stick and from stick to
slip can be determined from Eqs. (2), (4) and (5) for the system in Fig. 2(a) and from analogous
expression for the system in Fig. 2(b). In both cases, it is shown in Appendix B that the saltation
matrices are

S1 ¼
1 0

0 0

" #
; S2 ¼ I ¼

1 0

0 1

" #
ð13Þ

S1 is the saltation matrix from slip to stick, and S2 is the saltation matrix from stick to slip. In
the latter case, the transition from stick to slip is smooth and there is no jump, because the friction
law chosen is such that the dynamic and static friction coefficients are the same (Fig. 1(a)).

An important consequence of Eq. (13) is that S1 is singular, which means that the monodromy
matrix is also singular and, therefore, one of the Floquet multipliers is always equal to zero. The
physical meaning of this is that as the solution enters the stick phase, knowledge of the initial
velocity is lost and solutions entering the stick phase with different velocities will all leave the stick
phase with the same velocity.

For the mass on a moving base from Fig. 2(a) an analytical expression for UT can be derived
and the second Floquet multiplier can be determined:

Stick-slip ðk ¼ 0; c ¼ 0Þ: UT ¼
1 Dt1

0 0

" #
;

Floquet multipliers: l1 ¼ 1; l2 ¼ 0: ð14Þ

As could be expected, the second Floquet multiplier is 1. If the mass, which is oscillating at a
given position on the base, is taken to a different position, it will go on oscillating in that position.
All positions on the base are stable positions for that periodic solution. This result is further
discussed in Appendix B.

It can easily be seen that the situation changes if a spring is attached to the block and to a fixed
reference. In that case, it is shown in Appendix B that l1 ¼ cos2 yo1: If a damper is added, it
becomes cumbersome to derive an analytical expression for l1; but computer calculations show
that it is smaller than 1. Therefore, the stick-slip periodic solution is also stable for the spring-
mass-damper system.

For the continuous sliding situation, the monodromy matrix has the following form:

UT ¼ UðDt3ÞSUðDt2ÞSUðDt1Þ; ð15Þ

where UðDtiÞ are the fundamental solution matrices when the block is sliding and S is the saltation
matrix for the transitions from positive to negative and negative to positive acceleration of the
block. The time instants when the acceleration of the block changes sign can be determined from
(7) and (9) for the mass on a moving base and from analogous expressions if a spring and a
damper are attached to the mass. As shown in Appendix B, the saltation matrix has the form
given below:

S ¼
1 0

0 a

" #
with 0oao1 ) 0odetðSÞo1: ð16Þ
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For the mass on a moving base from Fig. 2(a) an analytical expression for UT can be derived
and the Floquet multipliers can be determined:

Sliding ðk ¼ 0; c ¼ 0Þ: UT ¼
1 Dt1 þ aDt2 þ a2Dt3

0 a2

" #
;

Floquet multipliers: l1 ¼ 1; l2 ¼ a2o1: ð17Þ

For the same reason explained before one of the Floquet multipliers is 1 and the other one is
smaller than 1, which means that the harmonic continuous sliding solution is stable when
on=o0-0: The same conclusion can be reached by looking at the determinant of the monodromy
matrix:

detðUTÞ ¼ detðUðDt3ÞÞdetðSÞdetðUðDt2ÞÞdetðSÞdetðUðDt1ÞÞ

with detðUðDtiÞÞ ¼ 1 and 0odetðSÞo1

) detðUTÞ ¼ detðSÞ detðSÞo1; ð18Þ

Since it can be said a priori that one of the Floquet multipliers is 1, it can be concluded
that the other one has to be smaller than 1. The above derivation is also valid when a spring
and a damper are attached to the block, because Eq. (16) has been derived for an arbitrary
value of on=o0o1 and damping. But in this case, the value of the Floquet multipliers cannot
be established a priori and that detðUTÞ ¼ l1l2o1 does not guarantee stability,
i.e. jl1jo1; jl2jo1:

However, computer calculations show that the Floquet multipliers are smaller than one for the
considered values of on=o0o1 with and without damping. Results for several different damping
values are given in Appendix B. Therefore, it can be concluded that the continuous sliding
periodic solution is also stable.

3. Energy dissipation: mass on a moving base

In the previous section it has been shown that, depending on the value of the friction force, two
stable stationary periodic solutions exist for the systems in Fig. 2. Therefore the groundwork has
been laid for the calculation of the energy dissipation at the friction interface and of its
dependence on the friction force and the mass of the block.

The energy dissipated per cycle can be calculated as the integral of the product of the dissipating
force times the relative velocity between block and base. This relative velocity is only non-zero at
time intervals ½t1; t2� and ½t3; t4�: Taking into account the periodicity relationships between time
instants t1; t3 and t2; t4 given in Eq. (7), the dissipated energy for an arbitrary cycle in the steady
state can be written as follows:

Ed ¼ 2

Z t2

t1

� Frð ’x0ðtÞ � ’x2ðtÞÞ dt ð19Þ
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Substituting Eq. (3) in (19), the following expression for the energy dissipated per cycle can be
derived:

ed ¼ 2o0 frðt2 � t1Þ
ðsino0t1 � sino0t2Þ

o0ðt2 � t1Þ
þ coso0t1 �

o0 fr

2
ðt2 � t1Þ

	 

: ð20Þ

In this equation the energy has been normalized to be: ed ¼ Ed=mo2
0 X 2

0 :
The above expression is valid for both the stick-slip and the continuous sliding situations, that

is for all values of the friction force in the range 0ofro1: In the stick-slip region equations (2), (4)
and (20) can be used to compute the energy dissipated per cycle from known values of the
normalized friction force and the frequency of the base motion. For the continuous sliding
equations (7) and (9) can be substituted in (20) to obtain expressions of the energy dissipation in
terms of t1 and of the normalized friction force for continuous sliding:

ed ¼
4

p
sin2o0t1; ð21Þ

ed ¼ 4fr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

p2 f 2
r

4

s
: ð22Þ

In Fig. 5 a graph of the normalized energy versus the normalized friction force, in the range
0ofro1; is plotted. The curve has been computed using (20) and (22). The part of the curve
corresponding to continuous sliding can be obtained analytically from (22), but the energy
dissipation for the stick-slip case has to be calculated numerically from (2), (4) and (20), since no
closed-form expressions for time instant t2 can be derived in this case.

The thick dashed line corresponds to the limit situation. To the right of this line stick-slip
motion will occur and, to the left, the block will permanently slip once sliding has occurred. The
dissipated energy drops to zero when the friction force is zero and when the friction force is high
enough to keep block and base together and equals the base acceleration amplitude times the mass
of the block.
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From Fig. 5 it is clear that the maximum energy dissipation is achieved in the continuous sliding
region and it can be easily seen, from (21), that this maximum occurs when o0t1 ¼ p=4:
Substituting this in (9), the value of the optimum normalized friction force can be calculated:

frjmax ¼

ffiffiffi
2

p
p

¼ 0:4502: ð23Þ

The optimum normalized friction force is a constant and it is smaller than the threshold force,
as could be expected from Fig. 5. The maximum normalized energy dissipation will be

ed jmax ¼
4

p
¼ 1:2732: ð24Þ

Eq. (24) shows that the value of the maximum achievable energy dissipation is independent of the
friction force and depends only on the block mass and the amplitude of the vibration velocity of
the base.

The analysis of this simple model has helped to clarify two aspects of frictional interaction as a
source of energy dissipation: the existence of an optimum friction force value and the positive
influence of the block mass on the dissipated energy. The values of the optimum friction force and
of the corresponding maximum energy dissipation have been analytically determined.

In their work with two base excited mass-spring systems Pratt and Williams [4] calculated the
dissipated energy numerically and plotted it as function of a normalized friction parameter,
showing there was a maximum. But no closed form expression for the optimum friction force and
maximum dissipated energy were given.

If the mass of the base is taken into account and a system such as that given in Fig. 6 is
considered, the same expressions hold for the threshold and optimum friction force and for the
maximum energy dissipation provided that the normalized parameters are redefined as follows:
fr ¼ FrðM þ mÞ=Fm; ed ¼ Ed ½o2

0MðM þ mÞ=mF2�:
From (24), the maximum energy dissipation can be obtained:

Ed jmax ¼
4

p
F2

o2
0M

1

1 þ
M

m

 �: ð25Þ

The maximum dissipated energy increases as the ratio of the mass of block 2 to the mass of
block 1 increases. For m{M the maximum energy dissipation is linearly related to m; which is the
same result obtained before. It can also be concluded that as the ratio m=M increases the benefit
of increasing the mass of the block becomes smaller.
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4. Energy dissipation: spring-mass-damper system on a moving base

This case can be considered as an extension of the example in Section 3, in which a spring of
stiffness k and a viscous damper of damping constant c are attached to the block of mass m; as
shown in Fig. 2(b). The natural frequency of the spring-mass system is on ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
; the damping

ratio is defined as x ¼ c=2mon and the damped natural frequency is od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
:

After the system is in motion for some time, a steady state will be reached that satisfies the
following conditions: the frequency of the relative motion will be equal to the frequency of the
base motion and the downward half-cycle of motion will follow the same law as the upward
half-cycle.

Now consider the half-cycle in which the relative velocity, and thus the friction force, is
negative. t1 is the time at which the relative velocity changes from being zero (stick-slip) or
positive (continuous sliding) to being negative and t2 is the time at which the relative velocity is
zero again. In both cases the velocity of the block at times t1 and t2 is equal to the velocity of
the base. The displacement of the block in the time interval ½t1; t2� can be computed as the sum of
the response of the spring-mass system to the initial conditions and the response to the friction
force, Fr: In the following equation *t ¼ t � t1:

x2ðtÞ ¼ e�xon *t x2ðt1Þ cosod *t þ
x sinod *tffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

 !
þ

’x2ðt1Þ
od

sinod *t

" #

�
Fr

k
1 � e�xon *t cosod *t þ

x sinod *tffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
 !" #

: ð26Þ

The boundary conditions that must be fulfilled in both the stick-slip and the continuous sliding
regime are

’x2ðt1Þ ¼ ’x0ðt1Þ; ð27Þ

’x2ðt2Þ ¼ ’x0ðt2Þ; ð28Þ

x0ðt1Þ � x2ðt1Þ ¼ �ðx0ðt2Þ � x2ðt2ÞÞ: ð29Þ

The fourth boundary condition that holds only in the stick-slip case:

.x2ðt1Þ ¼ .x0ðt1Þ; ð30Þ

And for continuous sliding the fourth boundary condition is

t2 ¼ t1 þ p=o0: ð31Þ

In these equations four unknowns must be determined: t1; t2; x2ðt1Þ and ’x2ðt1Þ: For the stick-slip
regime, Eqs. (27)–(30) have to be solved numerically to compute t1; t2 and x2ðt1Þ from given values
of base vibration amplitude, frequency, spring stiffness, damping ratio, block mass and friction
force.

For the continuous sliding case, t2 can be directly computed from (31) and Eqs. (27)–(29)
can be simplified to obtain a closed-form expression for the normalized friction force as a
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function of t1:

fr ¼ B
on

o0
; x

 �
coso0t1: ð32Þ

In (32), fr is the same normalized friction parameter defined in (2) and B is given in Appendix B.
If x-0 and on=o0-0 Eq. (32) equals (9). The energy dissipated per cycle can be obtained
from (19).

ed ¼ 2fr

(
sino0t1 � sino0t2 þ e�xont21

o0

od

coso0t1 sinodt21

 �

�
x2ðt1Þ

X0
þ

fro2
0

o2
n

 �
1� e�xont21 cosodt21 þ

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p sinodt21

 !" #)
; ð33Þ

where t21 ¼ t2 � t1: The same normalization factor defined in Section 3 has been used to define the
normalized energy dissipation given in (33). This expression holds in every case, no matter
whether the block slips continuously or stick-slip motion occurs. In the continuous sliding regime,
Eqs. (27)–(29) and (31) can be used to simplify this equation and derive an expression for the
normalized energy dissipation:

ed ¼
od

o0

ex onp=o0 þ e�x onp=o0 þ 2 cos
odp
o0

sin
odp
o0


 sin 2o0t1 þ
o0

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q e�xonp=o0 � exonp=o0 þ 2
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p sin

odp
o0

sin
odp
o0

cos2o0t1

0
BBB@

1
CCCA: ð34Þ

It can be shown that, if x-0 and on=o0-0; this expression equals Eq. (21). If the first
derivative of Eq. (34) with respect to o0t1 is equated to zero an expression for o0t1jmax can be
obtained:

tan 2o0t1jmax ¼ 2
on

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p sin
odp
o0

e�x onp=o0 � ex onp=o0 þ 2
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p sin

odp
o0

: ð35Þ

Eq. (35) gives the value of o0t1 for which the normalized energy expression given by (34) is
maximized. When x-0 and on=o0o1; o0t1jmax tends to 45�: If the maximum energy dissipation
occurs in the continuous sliding motion range, substitution of Eq. (35) into (34) gives the value of
the maximum dissipated energy. For the case of x-0 simple closed form expressions can be
obtained for the optimal normalized friction and the maximum dissipated energy as a function of
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the frequency ratio on=o0:

frjmax ¼
on

o0

1þ cos ðonp=o0Þffiffiffi
2

p
sin ðonp=o0Þ

; ð36Þ

ed jmax ¼ 2
on

o0

1 þ cos ðonp=o0Þ
sin ðonp=o0Þ

: ð37Þ

When on=o0-0 the maximum dissipated energy from (37) tends to the same value given in (24)
and when on=o0-1 the maximum dissipated energy tends to zero. The maximum energy
dissipation increases as the frequency ratio decreases.

However, the value of the threshold friction force must be computed to check whether the
optimum predicted by Eq. (35) can occur in the continuous sliding range. At the onset of
continuous sliding motion both conditions (30) and (31) hold and the following expression for
frjthreshold can be obtained:

frjthreshold ¼ B
on

o0
; x

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ C

on

o0
; x

 �2
s,

: ð38Þ

The expression for C is given in Appendix B. In Fig. 7 curves of the ratio between the threshold
friction force and the friction force computed from the value of o0t1jmax given by (35), versus the
frequency ratio, are shown for several values of x: Note that the force ratio does not increase
continuously but goes through a maximum as x increases.

It can be concluded that for on=o0o1 and 0oxo0:5 the threshold friction force is always
greater than the optimum friction force predicted by (35) and that the maximum energy
dissipation occurs in the continuous sliding motion range. However, for damping ratios above 0.5
there is a range of frequency ratios where the threshold friction force is lower than the optimum.
This means that this optimum is not really such because for that value of the friction force the
system is still in the stick-slip region. Therefore, the optimum friction force and the maximum
energy dissipation have to be determined numerically for the range of damping and frequency
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ratios under the identity line in Fig. 7. For the rest of damping and frequency values the maximum
dissipated energy has been computed by substituting Eq. (35) into (34) and the curves shown in
Fig. 8 have been obtained. The squares on the curves corresponding to the damping ratios 0.7 and
0.9 indicate the beginning of the numerically computed values. In that region the maximum
energy dissipation occurs in the stick-slip regime.

The first comment that can be made is that as on=o0-0 and x-0 the maximum dissipated
energy tends to the value given by (24). For damping ratios below approximately 0.2, the
maximum energy dissipation increases as the frequency ratio decreases. However, for higher
damping ratios the dissipated energy curve goes through a minimum as the frequency ratio
decreases and for damping ratios above approximately 0.8 the maximum energy dissipation is
higher for on=o0D1 than for on=o0D0:

For frequency ratios below approximately 0.3 the maximum energy dissipation increases as the
damping ratio decreases, but for frequency ratios close to 1 the opposite is true and the energy
dissipation increases as the damping ratio increases. For 0:3oon=o0o1 the maximum dissipated
energy goes through a minimum as the damping ratio increases.

In light of the above results it can be concluded that choosing the natural frequency of the
friction damper well below the vibration frequency of the main structure and making the damping
as low as possible will give the maximum energy dissipation. A design with a frequency ratio close
to one and a damping ratio above 50% is difficult to achieve in practice.

5. Conclusions and comments

In the above presented work simple analytical models have been used to study the behaviour of
a ring damper. The general trends to follow in order to maximize energy dissipation have been
established and are summarized now:

* The optimum value of the friction force that maximizes energy dissipation is constant for a
given vibration amplitude of the driving system and a given mass of the damper.
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* For a small damper mass relative to the mass of the driving system the dissipated energy is
proportional to the damper mass.

* The natural frequency of the damper should be low compared to the oscillation frequency of
the main system.

* The internal damping of the damper should be low. This explains why a steel ring, which has a
very low internal damping, is a very effective friction damper.

The same trends identified in this work have been found in laboratory measurements with ring
damped wheels [14,15].
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Appendix A. A different model for the friction force

In this work the vibrations of a mass on a moving base (Fig. 2) driven by the friction force
between them have been analyzed using the conventional Coulomb friction law (Fig. 1(a)). In the
following derivations the consequences of having different static and dynamic friction coefficients
(Fig. 1(b)) will be investigated.

Once a steady state is reached, Eq. (20), which gives the normalized energy as a function of the
normalized friction force and the time instants t1 and t2; is still valid. But the regions where stick-
slip or continuous sliding occur and the corresponding values for t1 and t2; have to be determined
again.

Now define a static and a dynamic normalized friction force:

msN

o2
0X0m

¼ fs;
mdN

o2
0X0m

¼ fd ; g ¼
fd

fs

¼
md

ms

: ðA:1Þ

Case 1: Stick-slip. In this region Eqs. (2) and (4) become (A.2) and (A.3), respectively:

sino0t1 ¼ fs; ðA:2Þ

o0g fsðt2 � t1Þ ¼ coso0t1 � coso0t2: ðA:3Þ

The stick-slip region, if it exists, will occur for a certain range of values of the static friction
force: 1 > fs > fs1 : The limiting value corresponds to the moment when the mass times the base
acceleration at time t2 equals de dynamic friction force:

sino0t2 ¼ �g fs1 : ðA:4Þ

From (A.2) to (A.4) and taking into account that o0t2 > p; an expression for the limiting value
of the static friction force can be obtained:

g fs1ðpþ sin�1ðg fs1Þ � sin�1ðfs1ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

s1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 f 2

s1

q
: ðA:5Þ
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The existence of the stick-slip region depends on the ratio of the dynamic friction force to the
static friction force, g: Making fs1 ¼ 1 in Eq. (A.5) and expression for the minimum value of g for
which a stick-slip region exists can be found.

p
2
þ y

� �
tan y ¼ 1 with g ¼ sin y: ðA:6Þ

This equation can be numerically solved to obtain gD0:44: If the ratio of dynamic to static
friction force is higher than 0.44 a stick-slip region will exist.

Case 2: Continuous sliding. In this case, Eq. (A.3) still holds and also that o0t2 ¼ o0t1 þ p: The
normalized energy dissipation can be calculated using Eq. (22) with the dynamic friction force as
friction force. The continuous sliding region corresponds to a certain range of values of the static
friction force: 0ofsofs2 : The limiting value corresponds to the moment when the mass times the
base acceleration at time t2 equals the static friction force:

sino0t2 ¼ �fs2 : ðA:7Þ

Combining (A.3), (A.7) and the periodicity relationship the following expression can be
derived:

fs2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ
p2g2

4

vuuut : ðA:8Þ

Substituting the above expression in Eq. (22) the normalized energy dissipation at the beginning
of the continuous sliding region can be obtained.

ed jfs2
¼

4g

1þ
p2g2

4

: ðA:9Þ

Case 3: ‘‘Uncertain’’ region. The question now is the following: what happens in the region
fs1 > fs > fs2? For this range of values of the static friction force, the mass times the acceleration of
the base at time t2 is higher than the dynamic friction force and lower than the static friction force.
Therefore both the stick-slip and the continuous sliding regimes are possible. It is out of the scope
of this work to investigate the conditions that would lead to one or the other behaviour of the
system. Instead, the consequences of this uncertainty for the conditions of maximum energy
dissipation will be analysed.

In Fig. 9 the normalized energy dissipation as a function of the normalized static friction force
is shown for two different values of g: In the ‘‘uncertain’’ region two different curves can be seen.
The upper curve corresponds to the continuous sliding regime and the lower to the stick-slip
regime.

In the situation shown in the upper graph ðg ¼ 0:7Þ the maximum energy dissipation occurs in
the region of continuous sliding and, therefore, the conclusions derived in Section 2 are valid.
However, for g ¼ 0:5 the maximum of the energy dissipation curve for continuous sliding occurs
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in the ‘‘uncertain’’ region. If the system chooses for the continuous sliding regime, then the
maximum energy dissipation will still be given by (24). But if the system stays in the stick-slip
regime, the maximum normalized energy dissipation will occur when fs ¼ fs2 and its expression is
given in (A.9). In that case, the maximum normalized energy dissipation is no longer constant and
is a function of g:

The last step is to determine the limiting value of g above which the maximum energy
dissipation occurs in the continuous sliding region and, thus, above which the results of
the analysis carried out in Section 2 are valid. The limiting case is such that the normalized
dynamic friction for maximum energy dissipation, Eq. (23), equals fs2 : Combining (23)
and (A.8):

gmin ¼
2

p
D0:64: ðA:10Þ

In the case of ring dampers for railway wheels dry contact between two steel surfaces occurs and
gD0:7: Therefore, it can be concluded that the analysis based on the classical Coulomb friction
law presented in Section 2 leads to acceptable conclusions.
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Appendix B. Stability of the periodic oscillations

The explicit form of Eq. (10) for the system in Fig. 2(b) is

’xðtÞ ¼ AðtÞxðtÞ þ bðtÞ with xðtÞT ¼ ½xðtÞ ’xðtÞ� ðB:1Þ

stick phase : A ¼
0 1

0 0

" #
; b ¼

0

.x0ðtÞ

" #
;

slip phase : A ¼
0 1

�on �2xon

" #
; b ¼

0

7
Fr

m

2
4

3
5:

Since the system is piecewise linear, the fundamental solution matrix for a time interval D in
which the system is slipping, can be written as

UðtÞ ¼ eAt; tAD: ðB:2Þ

As explained in Section 2.2 a discontinuity occurs when the block changes from the slip to the
stick phase, for the stick-slip periodic solution, or when the acceleration of the block changes sign,
for the continuous sliding solution. This discontinuity is accounted for by introducing saltation
matrices in the calculation of the monodromy matrix. The saltation matrix for a non-linear non-
autonomous system is given by [13]

S ¼ Iþ
ðfpþ � fp�ÞnT

nTfp� þ
@h

@t
ðtp; xðtpÞÞ

; ðB:3Þ

where fp� and fpþ are the value of the function left and right of the discontinuity point, hðt;xÞ is a
scalar function that defines the switching boundary and, n ¼ gradðhðt; xÞÞ is the vector normal to
this line. For the system discussed here, the switching boundary function and its derivative and
gradient take the following values:

hðt;xÞ ¼ ’x2 � ’x0ðtÞ;
@h

@t
ðt;xÞ ¼ � .x0ðtÞ; np ¼

0

1

" #
: ðB:4Þ

B.1. Stability of the stick-slip periodic solution

It has already been explained in Section 2.2 that for the stick-slip periodic solution a
discontinuity occurs when the block changes from the slip to the stick phase. For the friction law
chosen (Fig. 1(a)), the change from stick to slip is smooth and the saltation matrix is equal to the
identity matrix. At the point of change from slip to stick the left and right side values of the
function describing the system are

fp� ¼
’x0ðtpÞ

o2
0X0fr � o2

nx2ðtpÞ � 2xon ’x2ðtpÞ

" #
; fpþ ¼

’x0ðtpÞ

.x0ðtpÞ

" #
: ðB:5Þ

The above expressions, together with (B.4) can be substituted in Eq. (B.3) to obtain
the saltation matrix S1 from Eq. (13). That S1 is singular implies that one of the Floquet
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multipliers will always be zero. The implications of this result have already been discussed
in Section 2.2.

For the example in Fig. 2(a) ðon ¼ 0; x ¼ 0Þ; the fundamental solution matrices for the stick and
for the slip phase are the same:

UðDtiÞ ¼ USðDtiÞ ¼ eADti ¼
1 Dti

0 1

" #
: ðB:6Þ

If Eqs. (13) and (B.6) are introduced in (12), the monodromy matrix given in (14) can be
obtained. The corresponding Floquet multipliers are 1 and 0. In this case, the eigenvalue 1 is
related to a ‘‘rigid body’’ motion of the block. If the block is lifted and placed at another position,
it will stay there. The eigenvalue 0 is related to the velocity of the block and it means that the
velocity of the block will converge to its stable value within a cycle of the motion. Therefore, it can
be said that the solution is stable.

If a spring is attached to the mass, but the damping is kept to zero, the fundamental solution
matrix for the stick phase is still given by (B.6), but the fundamental solution matrix for the slip
phase can be written as follows:

UðDtiÞ ¼
cosonDti

1

on

sinonDti

�on sinonDti cosonDti

2
4

3
5: ðB:7Þ

The time instants when the mass changes from stick to slip and back can be determined from
Eqs. (26)–(30) with x ¼ 0: If Eqs. (13), (B.6) and (B.7) are substituted in (12), an expression for the
monodromy matrix can be derived:

UT ¼
cosonDt5 cos onDt3 cosonDt1

1

on

cosonDt5 cosonDt3 sinonDt1

�on sinonDt5 coson Dt3 cosonDt1 �sinonDt5 cosonDt3 sinonDt1

2
4

3
5: ðB:8Þ

This matrix has the following eigenvalues:

l1 ¼ cos2 onDt3o1 ðDt3 ¼ Dt5 þ Dt1Þ;

l2 ¼ 0: ðB:9Þ

Since it is known from Section 2 that 0oDt3pp=o0 and 0oon=o0o1; it is clear from the above
that the Floquet multipliers are always smaller than one and that the system is stable.

B.2. Stability of the continuous sliding periodic solution

In the continuous sliding regime, the acceleration of the block changes sign every time the
velocity of the block equals the velocity of the base and a jump occurs. The functions describing
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the motion of the system left and right of the discontinuity point are

fp� ¼
’x0ðtpÞ

o2
0X0fr � o2

nx2ðtpÞ � 2xon ’x2ðtpÞ

" #
;

fpþ ¼
’x0ðtpÞ

�o2
0X0fr � o2

nx2ðtpÞ � 2xon ’x2ðtpÞ

" #
: ðB:10Þ

The above expressions correspond to a change from positive to negative acceleration, but the
same result is obtained for the change from negative to positive acceleration. The time instant tp

can be obtained from (32). If the expressions (B.10) and (B.4) are introduced in (B.3) the saltation
matrix, S from equation (15), can be obtained:

S ¼

1 0

0 1 �
2

1 þ
sino0tp

fr

�
o2

n

o2
0

x2ðtpÞ
X0fr

� 2x
on

o0

coso0tp

fr

2
6664

3
7775: ðB:11Þ

In order to be able to establish the magnitude of the second term of the diagonal of S; Eqs. (32)
and (38) from Section 4 will be used:

fr ¼ B
on

o0
; x

 �
coso0tp with B

on

o0
; x

 �
¼

1

2

od

o0

exonp=o0 þ e�x onp=o0 þ 2 cos
odp
o0

 �

sin
odp
o0

; ðB:12Þ

frjthreshold ¼ frth
¼ B

on

o0
; x

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ C

on

o0
; x

 �2
s,

with C
on

o0
; x

 �
¼

od

o0

exonp=o0 þ cos
odp
o0

þ
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p sin

odp
o0

 !

sin
odp
o0

: ðB:13Þ

If Eqs. (28), (B.12) and (B.13) are introduced in (B.11) a new expression for the saltation matrix
can be obtained.

S ¼

1 0

0 1�
2

2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f 2
r

�
1

B2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f 2
rth

�
1

B2

s
2
66664

3
77775: ðB:14Þ

From (B.13) it is clear that frth
oB and from the definition of the threshold friction force, frofrth

;
which leads to the conclusion that 0oS22o1 for all values of fr; on=o0o1 and x:

From the above and from the analysis in Eq. (18) it can be concluded that the determinant of
the monodromy matrix is always smaller than 1. But that does not guarantee that both
eigenvalues will be smaller than one. In order to check that the Floquet multipliers are smaller
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than 1, the eigenvalues of the monodromy matrix in Eq. (15) have been numerically calculated
using also (B.2), (B.12), (B.13) and (B.14). In Fig. 10 the Floquet multipliers are plotted as a
function of on=o0 for several values of the non-dimensional friction coefficient and three different
values of the damping ratio.
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The norm of the Floquet multipliers is smaller than 1 for all cases, which means that the
continuous sliding periodic solution is stable in the range of frequency ratios and damping ratios
studied.

For on=o0-0 the Floquet multipliers are real and tend to the values given in (17), regardless of
the value of the damping ratio. As the frequency ratio increases the Floquet multipliers can
become a pair of complex conjugate values and as the frequency increases further they become
real again. The curves stop at the frequency ratio where the motion changes from continuous
sliding to stick-slip for that value of the non-dimensional frequency parameter. For the case with
no damping, Fig. 10(a), the Floquet multipliers tend to the values given in Eq. (B.9) as the
frequency ratio approaches the threshold value. If damping is included, the Floquet multipliers at
the threshold frequency are smaller than the values obtained with no damping. Therefore, the
stick-slip periodic solution is also stable when damping is included.
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